MBA备考:数学的排列组合与集合的关系

MBA备考:数学的排列组合与集合的关系
浏览203次 2个回答 更新于 2024-12-24 03:32:55#精选# MBA微课、MBA研修、MBA学位
  • MBA综合中数学的部分有一部分是考察排列组合与集合的关系 求排列组合就是求集合元素的个数。下面告诉MBA同学们用集合的观点去解决排列组合的问题,思路会更清晰。

    一、集合元素的个数以最常见的全排列为例,用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,则每一个九位数都是集合A的一个元素,集合A中共有9!个元素。以下我们用S(A)表示集合A的元素个数。
    二、集合的对应关系两个集合之间存在对应关系(以前学的函数的概念就是集合的对应关系)。如果集合A与集合B存在一一对应的关系,则S(A)=S(B)如果集合A中每个元素对应集合B中N个元素,则集合B的元素个数是A的N倍(严格的定义是把集合B分为若干个子集,各子集没有共同元素,且每个子集元素个数为N,这时子集成为集合B的元素,而A的元素与B的子集有一一对应的关系,则S(B)=S(A)*N
    例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。显然各子集没有共同元素。每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则 S(A)=S(B)*3! S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)
    例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法?设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。把集合B分为子集的集合,规则为全部由相同数字组成的数组成一个子集,则每个子集都是某6个数的全排列,即每个子集有6!个元素。这时集合C的元素与B的子集存在一一对应关系,则 S(B)=S(C)*6! S(C)=9!/3!/6!这就是我们用以前的方法求出的C(9,6) 以上都是简单的例子,似乎不用弄得这么复杂。但是集合的观念才是排列组合公式的来源,也是对公式更深刻的认识。大家可能没有意识到,在我们平时数物品的数量时,说1,2,3,4,5,一共有5个,这时我们就是在把物品的集合与集合(1,2,3,4,5)建立一一对应的关系,正是因为物品数量与集合(1,2,3,4,5)的元素个数相等,所以我们才说物品共有5个。我写这篇文章的目的是把这些潜在的思路变得清晰,从而能用它解决更复杂的问题。
    例3:9个人坐成一圈,问不同坐法有多少种? 9个人排成一排,不同排法有9!种,对应集合为前面的集合A 9个人坐成一圈的不同之处在于,没有起点和终点之分。设集合D为坐成一圈的坐法的集合。以任何人为起点,把圈展开成直线,在集合A中都对应不同元素,但在集合D中相当于同一种坐法,所以集合D中每个元素对应集合A中9个元素,所以S(D)=9!/9 我在另一篇帖子中说的方法是先固定一个人,再排其他人,结果为8!。这个方法实际上是找到了一种集合A与集合D之间的对应关系。用集合的思路解决问题的关键就是寻找集合之间的对应关系,使一个集合的子集与另一个集合的元素形成一一对应的关系。
    例4:用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,但要求1排在2前面,求符合要求的九位数的个数。集合A为9个数的全排列,把集合A分为两个集合B、C,集合B中1排在2前面,集合C中1排在2后面。则S(B)+S(C)=S(A)在集合B、C之间建立以下对应关系:集合B中任一元素1和2位置对调形成的数字,对应集合C中相同数字。则这个对应关系为一一对应。因此S(B)=S(C)=9!/2 以同样的思路可解出下题:从1、2、3…,9这九个数中选出3个不同的数作为函数y=ax*x+bx+c的系数,且要求a>b>c,问这样的函数共有多少个?
    例5:M个球装入N个盒子的不同装法,盒子按顺序排列。这题我们已经讨论过了,我再用更形象的方法说说。假设我们把M个球用细线连成一排,再用N-1把刀去砍断细线,就可以把M个球按顺序分为N组。则M个球装入N个盒子的每一种装法都对应一种砍线的方法。而砍线的方法等于M个球与N-1把刀的排列方式(如两把刀排在一起,就表示相应的盒子里球数为0)。所以方法总数为C(M+N-1,N-1) 例6:7人坐成一排照像, 其中甲、乙、丙三人的顺序不能改变且不相邻, 则共有多少种排法.。
    解:甲、乙、丙三人把其他四人分为四部分,设四部分人数分别为X1,X2,X3,X4,其中X1,X4》=0,X2,X3》0 先把其余4人看作一样,则不同排法为方程 X1+X2+X3+X4=4的解的个数,令X2=Y2+1,X3=Y3+1 化为求X1+Y2+Y3+X4=2的非负整数解的个数,这与把2个球装入4个盒子的方法一一对应,个数为C(5,3)=10 由于其余四人是不同的人,所以以上每种排法都对应4个人的全排列4!,所以不同排法共有C(5,3)*4!=240种。集合的方法运用熟练后,不需要每次具体设定集合,但头脑中要有清晰的对应关系。
  • 关于数学的排列组合与集合,同学有什么问题呢?
  • MBA综合中数学的部分有一部分是考察排列组合与集合的关系 求排列组合就是求集合元素的个数。下面告诉MBA同学们用集合的观点去解决排列组合的问题,思路会更清晰。一、集合元素的个数以最常见的全排列为例,用1、2、3、4、5、6、7、8、9组成数字不重复的九位数,则每一个九位数都是集合A的一个元...
  • 数列:通项公式、求和公式、等差数列、等比数列 排列组合及概率初步:加法原理、乘法原理、排列及排列数、组合及组合数、古典概型、事件关系及运算、伯努利试验.平面几何:三角形、平行四边形、矩形、菱形、正方形、梯形、圆、三角形的相似及全等.解析几何:基本概念及公式、直线表达形式、圆的表达形式、直...
  • MBA考研数学的内容,限定在初高中的数学知识点——包括算术与代数、几何、排列组合与概率、方程与不等式、数列等,难度高于中考、低于高考。纵观这几年的试卷真题,我们可以发现,试卷大部分针对的都是基础考点。但是它的题量较大,考生必须在不到一个半小时的时间内完成25道题目(共75分),以选择题和...
  • mba的考试科目有两个,具体如下 综合能力:上午8:30-11:30 考试时间3小时,总分200分,试卷是由数学、逻辑和写作构成,其中数学75分,逻辑60分,写作65分。数 学 就是初等数学,比如初数,排列组合概率,几何等。但大多考MEM的都是在职人士 ,已经毕业至少3年,基本忘得差不多,需要重新拾起来学习...
  • 1.学习方法 其一,MBA数学学习要系统学,要形成一个有效体系,所以建议数学学习可以每周集中1-2次学习,每次学习的时间2个小时左右,最好每次学一个专题。其次,不要搞题海战术,要做一定量的题,但一定要清楚做题的目的,是为了进一步理解、熟练和掌握考察的知识点,做题的思路和方法。再次,要善于思考...
免费领取国际硕博项目价格表
联系方式 / Contact information 学历/工作描述 / Requirement description
MBA备考:数学的排列组合与集合的关系相似问题
返回顶部
展开
价值4800元实战课免费试听
在职硕博学历提升 / 24小时客服微信SCZXCOM